

Air Tightness and Breathability

Neil Turner, Ecological Building Systems Airtightness, Breathability and Condensation Risk

26/04/2023

Airtightness, Breathability and Condensation Risk in Buildings

INTRODUCTION

NEIL TURNER

Technical Manager (UK)

- Former TIMSA/BBA-competent U-value scheme member
- Involved in development of CEN European Standards
- Extensive experience within the natural insulation sector
- 14 years manufacture of Warmcel Cellulose fibre
- 7 Years experience of Air Tightness and other natural fibre insulation products

AIR TIGHTNESS AND BREATHABILITY

- Air Tightness
 - Definition, Importance and Benefits
- Breathability
 - Definition, Comparison between different materials
 - Moisture vapour diffusion variable materials
 - Combining air tightness and breathability can an airtight material be breathable ?
 - Importance of Breathability in new buildings and retrofits and the key benefits of breathable natural insulation materials

DEFINE AIRTIGHTNESS?

What it is:

The elimination of **uncontrolled** air infiltration & exfiltration

What it is not:

A hermetically sealed box

Build Tight,

Ventilate Right

Controlling Moisture + IAQ

F

Guidance Document

Demand Controlled

Decentralised

Passive Stack

MVHR

Ventilation Building Regulations 2019 Technical

Rialtas na hÉireann Government of Ireland

Prepared by the Department of Housing, Planning and Local Government housing gov.ie

ONLINE VERSION

😹 HM Government

Ventilation

The Building Regulations 2010

APPROVED DOCUMENT F1 Means of ventilation

AIRTIGHTNESS COST BENEFITS

ANNUAL SAVINGS WITH BETTER AIRTIGHTNESS - Co. Cavan Passive 2019

- Based on 2019 Irish weather data
- Elemental U value average 0.1W/m2K
- Based on Electrical cost consumption referenced from SEAI

AIRTIGHTNESS TESTING & MEASUREMENT

Blower Door Test & Clarification on Air Permeability

Air Permeability: Q50 = cubic metres of leakage, per square metre of building envelope per hour, at a differential pressure of 50 Pascals, i.e. m3/(m2.hr) @ 50Pa.

Volumetric Air Change Rate: N50 – Air Changes per House at 50 Pascals Required for Passivhaus certification

BUILDING REGULATIONS

Legal Requirements for Air Tightness:

- Northern Ireland Part F 2012 is <10m³/hr/m²
- England/Wales Part L 2013 is < 8m³/hr/m²
- Scotland < 7m³/hr/m²
- Ireland nZEB- < 5m³/hr/m²*

Better than the regulations

- AECB Gold Standard Q50 < 0.75 m³/hr/m²
- Passivhaus <0.6 ACH @50Pa

Below 3m³/hr/m² requires Controlled Ventilation normally MVHR or centralised continuous mech. Extract.

AIRTIGHT **MATTERS**

Equivalent Size Hole in Fabric

- 200m2 footprint
- Two storey -

Building Regulation Back Stop

PRINCIPLE BEHIND INSULATION

Convective Heat Losses

Air Movement= Heat Transport

- Restricted Air Movement
- = **Integrity** of Insulation

PRINCIPLEBEHINDConvective Heat LossesINSULATION

Open Loop Bypass

Thermal bypass illustrations – Mark J Siddall

CONVECTION HEAT LOSS

The effect of air movement in insulation

-10 C **RH 50%** 13 APINIT 1m

Without Gap: 0.3W/m²K

With Gap: 1.44 W/m²K

Reduction factor of: 4.8

*Institute of building physics, Stuttgart **DBZ:12/89, page 1639ff**

MOISTURE VAPOUR IN CONSTRUCTION BUILD UPS

The effect of moisture by convection

Without Gap: 0.5g Water per 24hr

With Gap: **800g Water per 24hr**

Reduction factor of: 1600

*Institute of building physics, Stuttgart **DBZ:12/89, page 1639ff**

DEFINE THE AIR BARRIER

Identify leakage areas

- 3 main areas of Air Leakage
- Service Leaks
- Structural Leaks
- Combination of Both

AIRTIGHT MATERIALS

A guide through the good & bad

- Steel
- Concrete
- Timber
- Plaster
- Glass
- Intelligent Vapour Checks
- Certified Vapour tight P5 boards

¶ ¶

THE GOOD

AIRTIGHT MATERIALS

A guide through the good & bad

- Block & Brickwork
- Duct Tape
- Dot & Dab Plasterboard
- Silicone Caulking
- OSB*

THE BAD

AIRTIGHT MATERIALS And the Ugly

- Poor details
 - \mathbf{v}

Breathability

VARIBLE VAPOUR DIFFUSION RESISTANCE

Other Units

Water Vapour Diffusion Resistance (MNs/g)

- Multiply the Sd value by 5 to convert to MNs/g)

Water Vapour Diffusion Resistance Factor (µ)

- Multiply the µ value by 5 (MNs/gm) gives the Water Vapour Resistivity
- Divide the thickness of the product (in mm) by 1000: gives the MNs/g Value
- Lower the value = more moisture vapour diffusion open/breathable

VARIBLE VAPOUR DIFFUSION RESISTANCE

Humidity Variable Membranes: Combining with Natural Breathable Insulation

VARIBLE VAPOUR DIFFUSION RESISTANCE

Moisture Sorptive/hygroscopic materials

Absorption of moisture when in high humidity condition results in a lower Sd value

Higher moisture content under higher humidity assists diffusion via capillary action

So called **'wet cup'** and '**dry cup'**

Wet cup is based on external use and dry cup based on internal use

Example design values listed in EN10456

Combined Breathability and Air Tightness

- A material can indeed be airtight/have high air flow resistance and breathable !
 - High density natural fibre insulation
 - Monolithic breathable membranes

Best non-construction example

Goretex Jacket

Importance of breathable insulation in Construction: Internal Wall Insulation Solid Masonry Example

Moisture can penetrate the wall

- Wind driven rain
- From the ground
- Internal moisture vapour

Breathable natural fibre insulation Allows moisture vapour to diffuse from External to internal

Importance of breathable insulation in Construction: New Build Construction Example

Release of Built in Construction Moisture

Problem:

Sweating in the summer behind vapour closed barrier (or non breathable insulation below rafter)

Solutions:

Combine breathable natural insulation with variable diffusion membrane

Breathable internal finish with breathable insulation between rafter And ventilation directly above

Assessing the Moisture Risks

Computer- assisted simulation program for heat and humidity transports (dynamic) WUFI

Moisture load needs to be less

than drying reserves

Current EN 15026: 2007 provides higher accuracy compared with EN 13788:2011 in BS 5250.

Thank you

www.ecologicalbuildingsystems.com

info@ecologicalbuildingsystems.com

Irl: 046 9432104

UK: 01228 711 511