
# **Embodied Carbon -Updating the ICE Database**

24th Oct 2019

Dr Craig Jones Craig.Jones@CircularEcology.com

# The Inventory of Carbon & Energy (ICE)

- An embodied energy and carbon database for building materials
- Primarily for Construction Materials
- Data for over 200 materials
- Over 30,000 worldwide users
- BSRIA hardcopy published in January 2011
- Excel version free to download from <u>www.circularecology.com/ice-database.html</u>





# Updating The Inventory of Carbon & Energy (ICE)

- ICE database is a free resource will remain free
- Still well used
- However last updated in 2011
  - Data mainly compiled in 2010
- A lot has changed since 2010/11
- Very much due an update
- We obtained funding to update the ICE database
- To keep it freely available



# Updating The Inventory of Carbon & Energy (ICE)

- The update to ICE V3 funded by:
  - Heathrow Airport
  - Rail Safety and Standards Board (RSSB)
  - Environment Agency



# The Wider Landscape – What's Changed Since 2011?





## What's Changed Since Last ICE Update

- EN 15978:2011: Sustainability of construction works Assessment of environmental performance of buildings — Calculation method
- EN 15804:2012: Sustainability of construction works Environmental product declarations — Core rules for the product category of construction products
- **PAS 2050:2011 Version** Product carbon footprint standard from BSI. Linked to Carbon Trust Carbon Reduction Label
- World Resources Institute: GHG Protocol for Products
- HM Treasury Infrastructure Carbon Review, 2013
- PAS 2080 Carbon Management in Infrastructure, May 2016
- ISO 14067 Carbon footprint of products, 2018



## **Environmental Product Declarations (EPDs)**

#### **LCA Results**

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated) Parameters describing environmental impacts

|                            |                          |      | GWP                          | ODP                 | AP                           | EP                                            | POCP                                       | ADPE            | ADPF                           |
|----------------------------|--------------------------|------|------------------------------|---------------------|------------------------------|-----------------------------------------------|--------------------------------------------|-----------------|--------------------------------|
|                            |                          |      | kg CO <sub>2</sub><br>equiv. | kg CFC 11<br>equiv. | kg SO <sub>2</sub><br>equiv. | kg (PO <sub>4</sub> ) <sup>3-</sup><br>equiv. | kg C <sub>2</sub> H <sub>4</sub><br>equiv. | kg Sb<br>equiv. | MJ, nei<br>calorifio<br>value. |
| supp<br>Tran               | Raw material supply      | A1   | AGG                          | AGG                 | AGG                          | AGG                                           | AGG                                        | AGG             | AGG                            |
|                            | Transport                | A2   | AGG                          | AGG                 | AGG                          | AGG                                           | AGG                                        | AGG             | AGG                            |
| Product stage              | Manufacturing            | A3   | AGG                          | AGG                 | AGG                          | AGG                                           | AGG                                        | AGG             | AGG                            |
|                            | Total (of product stage) | A1-3 | -1430                        | 0.0000375           | 5.05                         | 0.746                                         | 1.16                                       | 0.000686        | 12900                          |
| Construction process stage | Transport                | A4   | MND                          | MND                 | MND                          | MND                                           | MND                                        | MND             | MND                            |
|                            | Construction             | A5   | MND                          | MND                 | MND                          | MND                                           | MND                                        | MND             | MND                            |

GWP = Global Warming Potential;

ODP = Ozone Depletion Potential;

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels.



#### Statement of Verification BREG EN EPD No.: 000087 ECO EPD Ref. No. 00000269 This is to wordly that the Environmental Product Declaration provided by: MEDITE EUROPE DAC Is in accordance with the requirements of: EN 15804:2012+A1:2013 and BRE Global Scheme Document SD207 This declaration is for: MEDITE EXTERIOR Company Address

Redmondstown Clonmel County Tipperary Ireland





## **Insights Into ICE Database V3**



## Scope of Update

- Core scope = Update the key construction materials:
  - Aggregates
     Concrete
  - Aluminium
     Glass
  - Asphalt
    Sand
  - Bitumen Steel

Cement

- Bricks Timber
  - Plastics {still in progress}
- This covers the vast majority of embodied carbon for most construction projects



### ICE V3.0 Data Collection Stats

- There is a background database, that stores all datapoints collected
- ICE V2.0 based upon 1,774 datapoints collected between 2004-2010
- ICE V3.0 Collected over 1,800 datapoints
  - More data has been logged than all of the previous version of the ICE database together
  - Collected far more data than anticipated
  - Challenge of working with large datasets
  - If 1,800 datapoints each needs editing, 2 min per entry
  - 30 hours at full utilisation



## The Inventory of Carbon & Energy (ICE) V2.0

| 日     | E S ICE V2.0 - Jan 2011 [Compatibility Mode] - Excel |              |                   |          |      |           |           |       |               |            |                             |           |                    |                 |       |                        |               |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------------------------------------------------------|--------------|-------------------|----------|------|-----------|-----------|-------|---------------|------------|-----------------------------|-----------|--------------------|-----------------|-------|------------------------|---------------|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File  | Home Inse                                            | ert Pag      | ge Layout         | Formulas | Data | Developer | Review Vi | w Hel | lp ,⊅ Tell me | e what you | want to do                  |           |                    |                 |       |                        |               |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Paste | ് Cut<br>™ Copy →<br>✓ Format Painter                | Arial<br>B I |                   |          |      |           | 한 Wrap Te |       | General       |            | Conditional<br>Formatting → | Format as | Normal 2<br>Normal | Normal 3<br>Bad |       | Normal_List<br>Neutral | Normal_Sheet1 | Insert | Delete Forma | The AutoSt International International International International International Internation Internat |
|       | Clipboard 5                                          |              | Font              |          | G    | Alig      | Inment    |       | Number        | 6          |                             |           |                    | st              | tyles |                        |               |        | Cells        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 122   | ▼ 1                                                  | × v          | f <sub>x</sub> 1. | 79       |      |           |           |       |               |            |                             |           |                    |                 |       |                        |               |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Materials                                        | Embodi     | ed Energy & Carbon Coe           | fficients                      | Comments                                                                                                                                                                                                                 |
|--------------------------------------------------|------------|----------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | EE - MJ/kg | EC - kgCO2/kg                    | EC - kgCO2e/kg                 | EE = Embodied Energy, EC = Embodied Carbon                                                                                                                                                                               |
| ggregate                                         |            |                                  |                                |                                                                                                                                                                                                                          |
| General (Gravel or Crushed Rock)                 | 0.083      | 0.0048                           | 0.0052                         | Estimated from measured UK industrial fuel consump<br>data                                                                                                                                                               |
| luminium                                         | Μ          | ain data source: International A | luminium Institute (IAI) LCA s | tudies (www.world-aluminium.org)                                                                                                                                                                                         |
| General                                          | 155        | 8.24                             | 9.16                           | Assumed (UK) ratio of 25.6% extrusions, 55.7% Roll<br>18.7% castings. Worldwide average recycled conten<br>33%.                                                                                                          |
| Virgin                                           | 218        | 11.46                            | 12.79                          |                                                                                                                                                                                                                          |
| Recycled                                         | 29.0       | 1.69                             | 1.81                           |                                                                                                                                                                                                                          |
| Cast Products                                    | 159        | 8.28                             | 9.22                           | Worldwide average recycled content of 33%.                                                                                                                                                                               |
| Virgin                                           | 226        | 11.70                            | 13.10                          |                                                                                                                                                                                                                          |
| Recycled                                         | 25.0       | 1.35                             | 1.45                           |                                                                                                                                                                                                                          |
| Extruded                                         | 154        | 8.16                             | 9.08                           | Worldwide average recycled content of 33%.                                                                                                                                                                               |
| Virgin                                           | 214        | 11.20                            | 12.50                          |                                                                                                                                                                                                                          |
| Recycled                                         | 34.0       | 1.98                             | 2.12                           |                                                                                                                                                                                                                          |
| Rolled                                           | 155        | 8.26                             | 9.18                           | Worldwide average recycled content of 33%.                                                                                                                                                                               |
| Virgin                                           | 217        | 11.50                            | 12.80                          |                                                                                                                                                                                                                          |
| Recycled                                         | 28         | 1.67                             | 1.79                           |                                                                                                                                                                                                                          |
| sphalt                                           |            |                                  |                                |                                                                                                                                                                                                                          |
| sphalt, 4% (bitumen) binder content<br>(by mass) | 2.86       | 0.059                            | 0.066                          | 1.68 MJ/kg Feedstock Energy (Included). Modelled f<br>the bitumen binder content. The fuel consumption of<br>asphalt mixing operations was taken from the Minera<br>Products Association (MPA). It represents typical UK |

# The Inventory of Carbon & Energy (ICE) V3

#### Aggregates and Sand

|                                                                                 | Version: ICE V 3.0 Beta     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Materials                                                                       | Embodied Carbon - kgCO2e/kg | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| general UK, mixture of land won, marine,<br>secondary and recycled, bulk, loose | 0.00747                     | This is an estimate of a market average aggregate. It models a mixture of 64.2% land won, 27.5%<br>recycled and secondary, and 8.3% marine aggregates. Consumption statistics have been taken<br>from a report, by British Marine Aggregates Producer Association, a member of the Mineral<br>Products Association (MPA). [Tenth sustainable development report for the British marine<br>aggregate industry, Dec 2016]. These results are sensitive to the embodied carbon of secondary<br>aggregates, which is a material where data would benefit from improvement. If you know the<br>specific type of aggregates you will use, then it is recommended to use a more specific category of<br>aggregates.                                      |
| general, virgin mixture of land won and<br>marine, bulk, loose                  | 0.00493                     | Excludes recycled and secondary aggregate. This has been modelled with 89% land won and 11%<br>marine won aggregate. Consumption statistics have been taken from a report, by British Marine<br>Aggregates Producer Association, a member of the Mineral Products Association (MPA). [Tenth<br>sustainable development report for the British marine aggregate industry, Dec 2016]. The<br>consumption of marine aggregate was taken to be the total marine aggregate production. Of the<br>total, 68% are consumed in the GB market, 11% are sent to the European market and 21% used as<br>beach replenishment or fill.                                                                                                                         |
| from virgin land won resources, bulk, loose                                     | 0.00438                     | Based upon the stastical average of all data collected for virgin aggregates in the ICE Database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| from virgin marine resources, bulk, loose                                       | 0.00904                     | Consumption statistics have been taken from a report, by British Marine Aggregates Producer<br>Association, a member of the Mineral Products Association (MPA). [Tenth sustainable<br>development report for the British marine aggregate industry, Dec 2016]. The consumption of<br>marine aggregate was taken to be the total marine aggregate production. The data has been<br>modelled with the average energy consumption for extracting marine aggregates in the UK. The<br>original data did not use all scope emissions factors, instead just scope 1 and 2. The data was<br>therefore used to estimate the full scope 1, 2 and 3 emissions. The impacts to produce aggregates<br>has a particularly large variation in embodied impacts. |
| from recycled resources, no heat treatment,<br>bulk, loose                      | 0.00610                     | Based upon the stastical average of all data collected for recycled aggregates with no heat<br>treatment in the ICE Database. Recycled aggregates include aggregates from construction and<br>demolition waste. It does not cover secondary aggregates, such as blaast fumace slag, or bottom<br>ash (see seperate category for these). Data for recycled aggregates is more difficult to obtain than<br>for virgin aggregates. There is also a large range in results for recycled aggregates, adding<br>uncertainty into the results.                                                                                                                                                                                                           |
| from recycled resources, with heat treatment,<br>bulk, loose                    | 0.11877                     | Based upon the stastical average of all data collected for recycled aggregates that have been<br>through heat treatment in the ICE Database. Recycled aggregates include aggregates from<br>construction and demolition waste. It does not cover secondary aggregates such as blaast furnace<br>slag, or bottom ash (see seperate category for these). Data for recycled aggregates is more<br>difficult to obtain than for vigin aggregates. There is also a large range in results for recycled<br>aggregates, adding uncertainty into the results.                                                                                                                                                                                             |
| expanded clay, bulk, loose                                                      | 0.39321                     | Based upon the stastical average of all data collected for expanded clay aggregates in the ICE<br>Database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| expanded foamed glass, bulk, loose                                              | 0.27763                     | Based upon the stastical average of all data collected for expanded foamed glass aggregates in the ICE Database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| from secondary resources, bulk, loose                                           | 0.06332                     | Including blast furnace slag, bottom ashes, road planings, mining spoil and other aggregates<br>manufacturered from secondary resources. Limited data on the embodied carbon of secondary<br>aggregates was available. There was also limited data on the consumption mixture of secondary<br>aggregates in the UK. The mixture was estimated based upon two sub-regional reports for the<br>Aggregates Working Party. Annual Aggregates Monitoring report 2015, Dec 2016 j and [Table 10B<br>in South East Aggregates Working Party. South East Aggregates Monitoring report 2014 & 2015,<br>Sept 2016]. The data would benefit from covering a wider share of the UK secondary aggregate<br>market,                                             |
| mixture of recycled and secondary<br>resources, bulk, loose                     | 0.01418                     | Data on recycled and (particularly) secondary aggregates would benefit from improvement. Limited<br>data on the embodied carbon of secondary aggregates was available. There was also limited data<br>on the consumption mixture of recycled and secondary aggregates in the UK. The mixture was<br>modelled with 33% secondary and 67% recycled aggregates. [Estimated from Ref: Aggregates,<br>cement and ready-mix concrete market investigation, Working paper on market definition for<br>aggregates, cement and RMX. ND67. Available from:<br>https://assets.publishing.service.gov.uk/media/5329dfb440f0b60a730002cf/market_definition_hou<br>sestyled.pdf]                                                                                |

circular ecology

#### **Data Quality**

#### • Each datapoint is now scored for data quality

| Main Material                                    | Sample Size | DQI Method<br>(Max 5) |      | DQI Temporal<br>(Max 5) | DQI<br>Geographic<br>(Max 5) | DQI<br>Transparency<br>(Max 5) | DQI Sample<br>Size (Max 10) | DQI Total - %<br>(Max 100%) |
|--------------------------------------------------|-------------|-----------------------|------|-------------------------|------------------------------|--------------------------------|-----------------------------|-----------------------------|
| AggregateSand                                    | 164         | 3.46                  | 2.74 | 4.62                    | 3.68                         | 2.00                           | 9.00                        | 73%                         |
| AggregateSand, Land won gravel and sand          | 134         | 3.62                  | 2.72 | 4.58                    | 3.60                         | 2.00                           | 8.00                        | 70%                         |
| AggregateSand, Recycled aggregate, no heat treat | 15          | 2.40                  | 2.67 | 4.53                    | 3.93                         | 2.00                           | 4.00                        | 56%                         |
| AggregateSand, Recycled aggregate, heat treat    | 6           | 1.00                  | 3.67 | 5.00                    | 4.00                         | 2.00                           | 3.00                        | 53%                         |
| AggregateSand, Secondary manufactured            | 4           | 5.00                  | 3.00 | 5.00                    | 4.00                         | 2.00                           | 2.00                        | 60%                         |
| AggregateSand, Expanded clay agg and sand        | 2           | 5.00                  | 2.00 | 5.00                    | 4.00                         | 2.00                           | 2.00                        | 57%                         |
| AggregateSand, Marine sand and aggregate         | 1           | 1.00                  | 1.00 | 5.00                    | 5.00                         | 2.00                           | 1.00                        | 43%                         |
| AggregateSand, Expanded foamed glass             | 1           | 5.00                  | 2.00 | 5.00                    | 4.00                         | 2.00                           | 1.00                        | 54%                         |
| AggregateSand, General aggregate                 | 1           | 5.00                  | 3.00 | 5.00                    | 5.00                         | 2.00                           | 1.00                        | 60%                         |

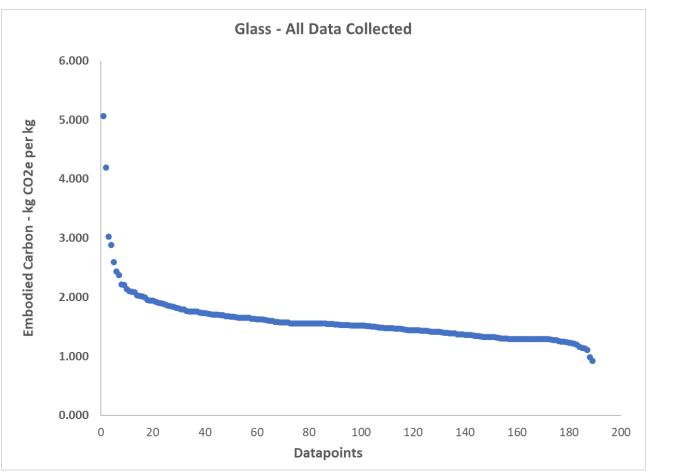
| Main Material                                                     | Sample Size | DQI Method<br>(Max 5) | Assurance | DQI Temporal<br>(Max 5) | DQI<br>Geographic<br>(Max 5) | Iranenaronev | DQI Sample<br>Size (Max 10) | DQI Total - %<br>(Max 100%) |
|-------------------------------------------------------------------|-------------|-----------------------|-----------|-------------------------|------------------------------|--------------|-----------------------------|-----------------------------|
| Glass                                                             | 189         | 5.00                  | 2.97      | 4.97                    | 3.27                         | 2.00         | 9.00                        | 78%                         |
| Glass, General                                                    | 109         | 5.00                  | 2.98      | 5.00                    | 2.73                         | 2.00         | 8.00                        | 73%                         |
| Glass, Toughened                                                  | 43          | 5.00                  | 3.00      | 5.00                    | 4.00                         | 2.00         | 5.00                        | 69%                         |
| Glass, Glazing, Double                                            | 10          | 5.00                  | 2.90      | 5.00                    | 4.00                         | 2.00         | 4.00                        | 65%                         |
| Glass, Multi layer safety, unfilled                               | 8           | 5.00                  | 3.00      | 5.00                    | 4.00                         | 2.00         | 3.00                        | 63%                         |
| Glass, Multi layer safety, filled core, fire resistant, toughened | 6           | 5.00                  | 3.00      | 5.00                    | 4.00                         | 2.00         | 3.00                        | 63%                         |
| Glass, Glazing triple                                             | 6           | 5.00                  |           |                         |                              |              |                             |                             |

### Average Method of all Data Collected

- Statistics on the average method of all data collected and logged in the background database
- The data quality indicators score against method
- EN 15804 being top score of 5 out of 5

| Method Stated                  | Fraction of All Data Collected |                                              |
|--------------------------------|--------------------------------|----------------------------------------------|
| EN 15804 Data                  | 88.8%                          | Totals will not add to 100%. This is because |
| ISO 14067                      | 4.4%                           | some studies claim<br>adherence to multiple  |
| ISO 14044 Only                 | 5.2%                           | footprint standards.                         |
| No standardised method claimed | 6.7%                           |                                              |




# **Improved Statistics**

| Main Material                                                     | Sample Size | Average<br>Embodied<br>Carbon (kg<br>CO2e/kg) | Min<br>Embodied<br>Carbon (kg<br>CO2e/kg) | Max<br>Embodied<br>Carbon (kg<br>CO2e/kg) | Standard<br>Deviation<br>Embodied<br>Carbon (kg<br>CO2e/kg) | Variance<br>Based on a<br>Sample<br>(Excel Var<br>Function)<br>Embodied<br>Carbon (kg<br>CO2e/kg) |
|-------------------------------------------------------------------|-------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Glass - All Data Collected                                        | 189         | 1.594                                         | 0.920                                     | 5.062                                     | 0.434                                                       | 0.188                                                                                             |
| Glass, General                                                    | 109         | 1.437                                         | 0.920                                     | 2.027                                     | 0.191                                                       | 0.036                                                                                             |
| Glass, Toughened                                                  | 43          | 1.667                                         | 1.307                                     | 2.440                                     | 0.232                                                       | 0.054                                                                                             |
| Glass, Glazing, Double                                            | 10          | 1.626                                         | 1.331                                     | 1.940                                     | 0.167                                                       | 0.028                                                                                             |
| Glass, Multi layer safety, unfilled                               | 8           | 1.556                                         | 1.422                                     | 1.739                                     | 0.097                                                       | 0.009                                                                                             |
| Glass, Multi layer safety, filled core, fire resistant, toughened | 6           | 2.082                                         | 1.947                                     | 2.203                                     | 0.083                                                       | 0.007                                                                                             |
| Glass, Glazing triple                                             | 6           | 1.747                                         | 1.653                                     | 1.870                                     | 0.083                                                       | 0.007                                                                                             |

| Main Material                                                        | Percentiles - Where Available - kgCO2e per kg |       |       |       |       |       |              |  |  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------|-------|-------|-------|-------|-------|--------------|--|--|--|--|
|                                                                      | 10                                            | 20    | 25    | 50    | 75    | 80    | 90           |  |  |  |  |
| Glass - All Data Collected                                           | 1.291                                         | 1.320 | 1.357 | 1.530 | 1.688 | 1.739 | 1.947        |  |  |  |  |
| Glass, General                                                       | 1.250                                         | 1.295 | 1.296 | 1.417 | 1.553 | 1.555 | 1.650        |  |  |  |  |
| Glass, Toughened                                                     | 1.377                                         | 1.486 | 1.507 | 1.630 | 1.765 | 1.817 | 1.989        |  |  |  |  |
| Glass, Glazing, Double                                               | 1.345                                         | 1.476 | 1.486 | 1.640 | 1.730 | 1.795 | 1.928        |  |  |  |  |
| Glass, Multi layer safety, unfilled                                  |                                               | 1.443 | 1.462 | 1.548 | 1.634 | 1.669 |              |  |  |  |  |
| Glass, Multi layer safety, filled core,<br>fire resistant, toughened |                                               | 1.973 | 1.996 | 2.097 | 2.151 | 2.175 |              |  |  |  |  |
| Glass, Glazing triple                                                |                                               | 1.663 | 1.671 | 1.718 | 1.853 | 1.861 |              |  |  |  |  |
|                                                                      |                                               |       |       |       |       | (     | circul<br>ec |  |  |  |  |

#### **Improved Visualisations**


- Distribution charts for all sub-material categories
- The below curve is a typical trend





### **Improved Visualisations**

#### • Histogram charts for all sub-material categories





#### **Run Your Own Statistical Analysis**

All datapoints provided by material sub-category – to run

#### your own statistical analysis

| Datapoint<br>Io. | Glass - All<br>Data<br>Collected | Glass,<br>General | Glass,<br>Toughened | Glass,<br>Glazing,<br>Double | Glass,<br>Multi layer<br>safety,<br>unfilled | Glass, Multi layer<br>safety, filled core,<br>fire resistant,<br>toughened | Glass,<br>Glazing<br>triple |
|------------------|----------------------------------|-------------------|---------------------|------------------------------|----------------------------------------------|----------------------------------------------------------------------------|-----------------------------|
| 1                | 5.062                            | 2.027             | 2.440               | 1.940                        | 1.739                                        | 2.203                                                                      | 1.870                       |
| 2                | 4.193                            | 2.000             | 2.213               | 1.819                        | 1.652                                        | 2.134                                                                      | 1.847                       |
| 3                | 3.026                            | 1.954             | 2.080               | 1.700                        | 1.581                                        | 2.100                                                                      | 1.732                       |
| 4                | 2.885                            | 1.910             | 2.030               | 1.669                        | 1.557                                        | 2.095                                                                      | 1.703                       |
| 5                | 2.596                            | 1.840             | 1.928               | 1.662                        | 1.538                                        | 2.012                                                                      | 1.677                       |
| 6                | 2.440                            | 1.793             | 1.900               | 1.618                        | 1.506                                        | 1.947                                                                      | 1.653                       |
| 7                | 2.375                            | 1.760             | 1.890               | 1.555                        | 1.448                                        |                                                                            |                             |
| 8                | 2.213                            | 1.760             | 1.853               | 1.490                        | 1.422                                        |                                                                            |                             |
| 9                | 2.203                            | 1.730             | 1.808               | 1.472                        |                                              |                                                                            |                             |
| 10               | 2.134                            | 1.703             | 1.792               | 1.331                        |                                              |                                                                            |                             |
| 11               | 2.100                            | 1.650             | 1.765               |                              |                                              |                                                                            |                             |
| 12               | 2.095                            | 1.650             | 1.760               |                              |                                              |                                                                            |                             |
| 13               | 2.080                            | 1.640             | 1.760               |                              |                                              |                                                                            |                             |
| 14               | 2.030                            | 1.604             | 1.720               |                              |                                              |                                                                            |                             |
| 15               | 2.027                            | 1.587             | 1.712               |                              |                                              |                                                                            |                             |
| 16               | 2.012                            | 1.576             | 1.710               |                              |                                              |                                                                            |                             |
| 17               | 2.000                            | 1.576             | 1.695               |                              |                                              |                                                                            |                             |
| 18               | 1.954                            | 1.560             | 1.680               |                              |                                              |                                                                            |                             |
| 19               | 1.947                            | 1.560             | 1.673               |                              |                                              |                                                                            |                             |
| 20               | 1.940                            | 1.560             | 1.656               |                              |                                              |                                                                            |                             |
| 21               | 1.928                            | 1.556             | 1.640               |                              |                                              |                                                                            |                             |
| 22               | 1.910                            | 1.555             | 1.630               |                              |                                              |                                                                            |                             |
| 23               | 1.900                            | 1.555             | 1.627               |                              |                                              |                                                                            |                             |
| 24               | 1.890                            | 1.554             | 1.627               |                              |                                              |                                                                            |                             |

### Links Directly to EPDs

- Links to hundreds of EPDs on each material profile
- Including EPD number and hyperlink if digitally available on

#### the internet

| ltem | ICE DB Ref<br>Number | EPD? | Reference Details                                                                                   | Description                                                                                                    | Hyperlink                       |
|------|----------------------|------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1    | 363                  | Yes  | EPD Number: BREG EN EPD<br>000083 published by BRE, 2017                                            | EPD for MEDITE<br>PREMIER                                                                                      | <u>Go To</u><br><u>Resource</u> |
| 2    | 370                  | Yes  | EPD Number: BREG EN EPD<br>000124 published by BRE, 2017                                            | EPD for Wood for good,<br>1m3 of kiln dried planed<br>or machined sawn timber<br>used as structural<br>timber. | <u>Go To</u><br><u>Resource</u> |
| 3    | 570                  | Yes  | EPD Number:<br>EPD-EHW-20130013-IBC1-DE<br>published by IBU - Institut Bauen &<br>Umwelt e.V., 2013 | EPD for Gypsum fiber<br>board                                                                                  | <u>Go To</u><br><u>Resource</u> |
| 4    | 901                  | Yes  | EPD Number: EPD-EHW-20130012-<br>IBC1-DE published by IBU - Institut<br>Bauen & Umwelt e.V., 2013   | EPD for Laminate floor<br>(DPL)                                                                                | <u>Go To</u><br><u>Resource</u> |
|      | ·                    |      |                                                                                                     | ·                                                                                                              | circ                            |

#### **More Interactive Content**

#### • Some materials are presented in different units

| In-Situ Concrete     |    |                                                           |            |  |  |  |  |  |  |  |
|----------------------|----|-----------------------------------------------------------|------------|--|--|--|--|--|--|--|
| SELECT declared unit | kg | This unit is only applied to the in-situ concrete section | ~~~<br>~~~ |  |  |  |  |  |  |  |

• Mini excel tool for steel by recycling assumptions

| Enter end of life recover rate, %<br>[Or effective recycled content] | 85% | Enter a value from 0-100%.<br>Suggested value of 85%. |
|----------------------------------------------------------------------|-----|-------------------------------------------------------|
|                                                                      |     |                                                       |

#### • Mini excel tool for precast concrete

| <u>SELECT concrete type (scroll up on drop</u> –<br><u>down list)</u>                                                                    | Results for precast concrete of selected type |                                      |                                |                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------|-----------------------------------------|--|
|                                                                                                                                          | Declared<br>Units                             | Embodied Carbon - kgCO2e<br>per unit | Mass per declared<br>unit - kg | Embodied Carbon per kg - kg CO2e per kg |  |
| Concrete - Ordinary Portland Cement (OPC)<br>concrete - CEM I based - with total<br>cementitious content of 300 kg per m3 of<br>concrete | m3                                            | 353                                  | 2380                           | 0.148                                   |  |
| Concrete - 50% ggbs cement replacement -<br>with total cementitious content of 320 kg per<br>m3 of concrete                              | m3                                            | 231                                  | 2380                           | 0.097                                   |  |
| Concrete - 30% pfa cement replacement - with<br>total cementitious content of 320 kg per m3 of<br>concrete                               | m3                                            | 283                                  | 2380                           | 0.119                                   |  |
|                                                                                                                                          |                                               |                                      |                                |                                         |  |



#### **Carbon Calculator for Concrete**

• Excel based tool to model embodied carbon of cement,

9.6%

10.1%

0.0%

0.6%

22.7%

18.7%

#### mortar and concrete will be released for the first time

4. RESULTS - Embodied Carbon

Embodied carbon of concrete per m3

139

140 141

161

162

163

164

165

166

Aggregates

Transport of

constituents

Precasting

Concrete batching

plant operations

Transport to site

With mixing waste



4.4%

4.4%

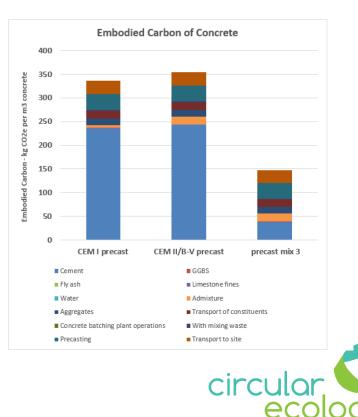
0.0%

0.8%

9.9%

8.4%

4.0%


4.2%

0.0%

0.8%

9.5%

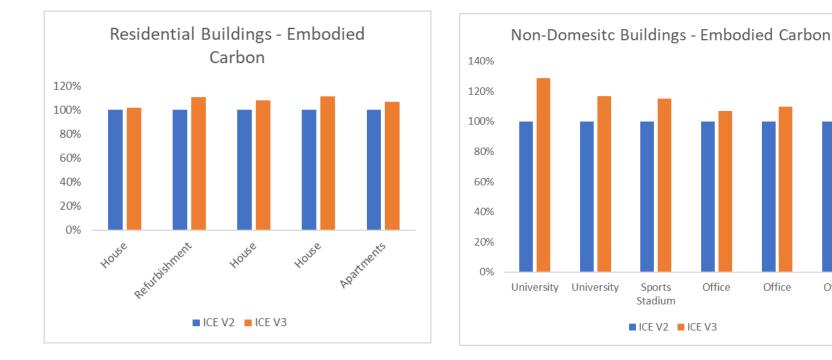
7.8%



### **Data for Building Elements**

- Data has been added for:
  - Brick walls, per m<sup>2</sup>
    - Single and double skin walls
  - Concrete block walls, per m<sup>2</sup>
    - By various block types and dimensions
  - Glass by thickness of glazing, per m<sup>2</sup>
    - And single, double or triple glazed
  - Asphalt road surface layers, by 100mm layer thickness per m<sup>2</sup>



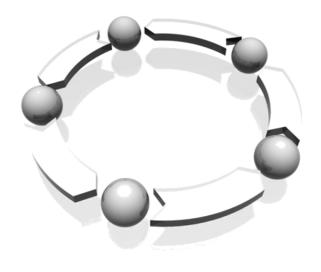

# **Analysis**





#### ICE V3 – Difference to Embodied Carbon Results

- We have tested ICE V3, in comparison to ICE V2.0 on several buildings
- This should be considered as a high level (first order) analysis ۲
- Results suggest that embodied carbon may be higher than previously thought...






Office

Office

#### How To Access ICE V3





#### ICE V3

- It is freely available on the website
  - <u>www.circularecology.com/embodied-energy-and-</u> <u>carbon-footprint-database.html</u>
- That page will always have the latest version publicly available



### Acknowledgements

Thank you to the 3 funders:

- Heathrow Airport
- Rail Safety and Standards Board (RSSB)
- Environment Agency

