Sustainable Construction Materials from agricultural co-products:
Optimising straw bale insulation

Dr Shawn Platt and Prof. Pete Walker
BRE Centre for Innovative Construction Materials, University of Bath
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.

BRE Centre for Innovative Construction Materials

• Research Centre in partnership with BRE since 2006
• 20 academic staff; 40+ researchers
• Research fields:
 o Low carbon cements and concrete materials
 o Innovative concrete structures
 o Timber Engineering
 o Eco-materials (bio-based; mineral based)
 o Energy performance materials
• Facilities include:
 o Scientific laboratories
 o Structures laboratories
 o Building Research Park/HIVE
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.
Prototype aim

To develop a novel prototype straw bale insulation product, suitable for a wider range of non-loadbearing building applications, with optimal thermal resistance properties.
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.

Previous work: Thermal conductivity of straw bales

Figure 8. Thermal conductivity versus density for a range of straw samples in dry and humid states. RH: relative humidity; CEBTP: Centre d’Expertise du Bâtiment et des Travaux Publics; and FASBA: Fachverband Strohballenbau. 'Evaluation of the thermal performance of an innovative prefabricated natural plant fibre building system' Andy Shea, Katharine Wall and Pete Walker. Building Services Engineering Research, 2013.
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.

Previous work: Thermal conductivity of straw bales

• RH and temperature have a significant impact on the measured thermal conductivity.

• A least squares regression model for the determination of apparent thermal conductivity as a function of density results in a thermal conductivity value of 0.064 W/mK at 120 kg/m3.

• Thermal conductivity depends on straw orientation:
 • 0.064 W/mK (straw oriented parallel to direction of heat flow)
 • 0.045 W/mK (straw perpendicular to direction of heat flow)
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.
Manufacture process

Harvest of the wheat straw

Standard dimensions

Production of rectangular or round bales in the field (balers)

Dimensions chosen

Production of rectangular bales in the field (balers)

Re-string bale to improve properties (new hydraulic machines) and line with breathable fabric?

Use

The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.
Next steps

- Refine prototype manufacture process
- Characterise properties:
 - Density
 - Mechanical properties
 - Thermal conductivity
 - Fire resistance
- Demonstrate performance at full-scale
- Develop proposals for up-scaling prototype production
- Disseminate results

The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.
The SB&WRC project is supported by European Union funding from the Interreg VA France (Channel) England programme, which is co-financed by the ERDF. The ERDF is contributing €1.26 million toward the project.